Dipole moment (µ): Dipole moment of a polar molecule is equal to the product of the magnitude of the charge (e) & the distance (d).

Dipole moment (μ) = e x d = = (4.8 x 10-10 esu) x (10-8 cm.) =4.8 x 10-18 esu. cm = 4.8 Debye

[separation of one full e⁻ charge by 10⁻⁸ cm distance]

 $[1 \text{ Debye} = 1\text{D} = 10^{-18} \text{ esum.cm}]$

CGS unit of dipole moment: Debye (D) & SI unit: Coulomb-meter (C.m).

1C.m = 2.9962 x 10²⁹ D

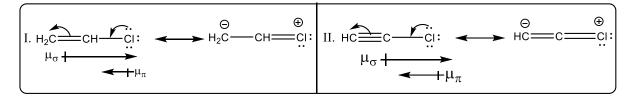
Q-1. The dipole moment of methyl halides is: CH_3F (1.82 D), CH_3Cl (1.94 D), CH_3Br (1.79 D) & CH_3I (1.64D). Explain.

Solution: The decreasing order of electronegativity of halogen and polarity of C-X (X = halogens) bonds are F > C I> Br > I and C-F > C-CI > C-Br> C-I respectively. So, it is expected that the decreasing order of dipole moment of methyl halides will be CH₃F > CH₃Cl > CH₃Br > CH₃I. But the dipole moment of CH₃Cl is higher than CH₃F. This can be explained by the shorter C-F bond distance than C-Cl bond distance. In CH₃F, the shorter C-F bond distance tends to decreases the value of μ (i.e., μ = e x d) even though F is more electronegative than Cl.

Q-2. The dipole moment of methyl chloride than methyl fluoride. Explain.

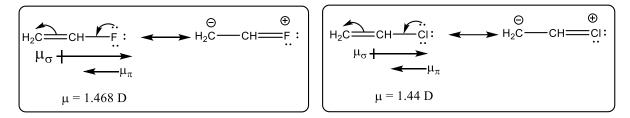
Solution: Dipole moment of a polar molecule is equal to the product of the magnitude of the charge (e) & the distance (d) i.e., $\mu = e \times d$. As F is more electronegative than Cl, the magnitude of 'e' in CH₃F is higher than that in CH₃Cl but the C-F bond (d) is shorter than the C-Cl bond. Because of this, the value of the product of 'e' & 'd' i.e., μ is larger for CH₃Cl & smaller for CH₃F. Therefore, the dipole moment of CH₃Cl is higher than CH₃F.

Q-3. Which of the following compounds will have higher dipole moment & why?

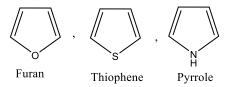

 H_3C — CH_2 — CI and H_2C — CH — CI

Solution: Chlorine is more electronegative than carbon. As a result, the C-Cl bond in ethyl chloride becomes polar & the compound shows considerable dipole moment. In vinyl chloride, the lone pair on chlorine atom becomes involved in resonance interaction with π -orbital of the double bond. As a result, in vinyl chloride, the electron withdrawing -I & +R effect of chlorine atom operates in opposite directions thereby decreasing its dipole moment as compared to that of ethyl chloride.

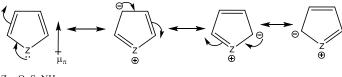
Q-4. Compare the dipole moment for following compounds.

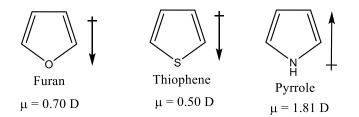

$$H_2C \longrightarrow CH \longrightarrow CI$$
 and $HC \longrightarrow CI$
I II

Solution: Chlorine is more electronegative than carbon. As a result, the C-Cl bond in both compound I & II becomes polar & the compound shows considerable dipole moment. In both compound I & II, the lone pair on chlorine atom becomes involved in resonance interaction with π -orbital of the double bond. The magnitude of μ_{π} in compound II is higher than that of μ_{π} in compound I. But the C-Cl bond moment (μ_{σ}) is equal in magnitude in both compound I & II. In both compounds, the electron withdrawing -I & +R effect of chlorine atom operates in opposite directions thereby decreasing their dipole moment. As a result, the dipole moment of compound II is lower than that of compound I.

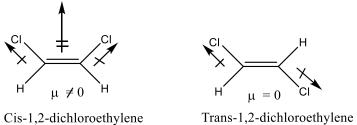


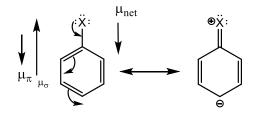
Q-5. Which one of the following has higher dipole moment & why? Vinyl chloride & vinyl fluoride. [C.U-2012]


Solution: Fluorine is more electronegative than chlorine. As a result, C-F bond in vinyl fluoride is more polar than C-Cl bond in vinyl chloride. In both compounds, vinyl fluoride & vinyl chloride, the lone pair of halogen atom (F or Cl) becomes involved in resonance interaction with π -orbital of the double bond. The magnitude of μ_{π} in vinyl fluoride is higher than that of μ_{π} in vinyl chloride due to greater $2p_{\pi}$ - $2p_{\pi}$ overlapping between C-F bond in vinyl fluoride. Considering the opposing moment $\mu_{\pi} \& \mu_{\sigma}$, the dipole moment of vinyl fluoride is slightly greater than that of vinyl chloride.

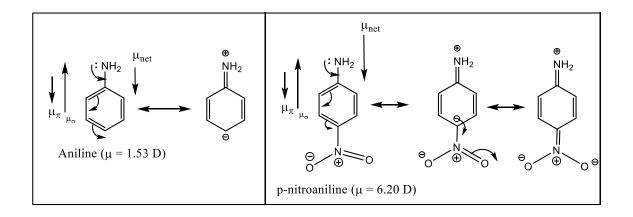

Q-5. Compare the value & the direction of dipole moment for each of following aromatic heterocyclic compounds.

Solution: In the aromatic heterocyclic compounds, the lone pair on heteroatom is conjugated with the π -orbitals of the ring. In furan & thiophene, the dipole moment associated with the π -system (i.e., μ_{π}) cancels the σ -moment (i.e., μ_{σ}) considerably. As a result, the net dipole moment of furan & thiophene is reduced. Due to greater electronegativity of oxygen atom, the π -moment of furan is lower than that of thiophene. So, furan has greater dipole moment than thiophene. In pyrrole, the π -moment is larger than σ -moment & because of this, the direction of the net dipole moment is actually reversed from its saturated counterpart.

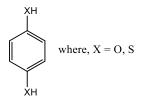



Q-6. Explain why trans-1,2-dichloroethylene has no dipole moment but cis-1,2-dichloroethylene does? [B. U-2001]

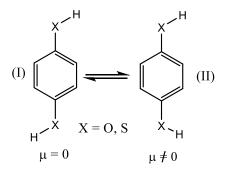
Solution: The carbon atoms in these compounds is sp2 hybridized. So, all the atoms of each molecule lie in the same plane. Since the chlorine atom in the cis-isomer lie on the same side of the double bond, there is a net dipole moment resulting from two individual C-Cl bond moments. In the transisomer the Cl atoms lie on the opposite sides of the double bond & the C-Cl bond moments are antiparallel. So, the individual C-Cl bond moments cancel each other & the molecule becomes non-polar.


Q-7. The decreasing order of dipole moment of C_6H_5X is X = CI > Br > I > F. Explain.

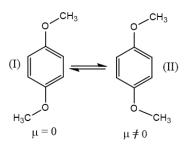
The decreasing order of electronegativity of halogens is F > CI > Br > I. So, the μ_{σ} is highest for X = F but least for X + I. Similarly, μ_{π} moment is highest for X = F due to effective 2p-2p overlapping whereas μ_{π} is negligible for X Cl/Br/I due to less effective 3p-2p, 4p-2p & 5p-2p overlaps respectively. Therefore, the overall effect leads to least dipole moment for PhF & highest for PhCl.



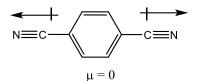
Q-8. The dipole moment of aniline is lower than p-nitroaniline. Explain.


Solution: In aniline, the $\mu_{\sigma} \& \mu_{\pi}$ of -NH₂ group operate in opposite directions thereby decreasing its dipole moment. In this case μ_{π} is greater than μ_{σ} . As a result, the net dipole moment operates in the direction of -NH₂ group. In p-nitroaniline, -I effect of NO2 group & +R effect of -NH₂ group act in the same direction. Due to this extended conjugation, the effective length of dipole becomes higher & hence μ is higher than the calculated value.

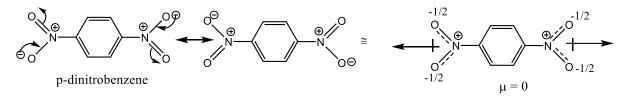
Q-8. The dipole moment of the following compounds is not zero. Explain.



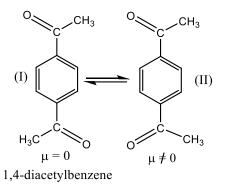
Solution: The given compound exists as two rotational isomers (I & II) in equilibrium. In II, the direction of the resultant group moment of each -SH group does not lie on the same plane of the ring & also does not acts along the diagonal of the ring. Because of this, the given compound possesses appreciable dipole moment.


Q-9. The dipole moment of p-dimethoxybenzene is not zero. Explain.

Solution: Similar as the answer of question no. 8

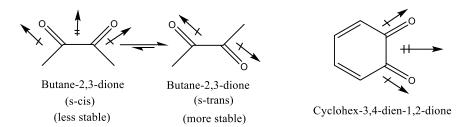

Q-10. the dipole moment of p-dicyanobenzene is zero-explain.

Solution: In p-dicyanobenzene, the direction of the resultant group moment of each -CN group lie on the same plane of the benzene ring. Because of this the μ of the p-dicyanobenzene is zero.

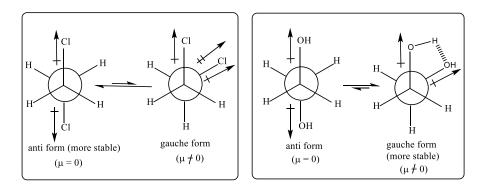

Q-11. The dipole moment of p-dinitrobenzenne is zero-explain.

Solution: The -NO₂ group has a symmetrical arrangement of atoms and so, the direction of the resultant group moment lies on the diagonal of the hexagon. For this reason, p-dinitrobenzene has no dipole moment.

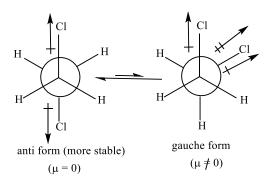
Q-12. The dipole moment of 1,4-diacetylbenzene is not zero. Explain.


Solution: The 1,4-diacetylbenzene exists as two rotational isomers (I & II) in equilibrium. In II, the direction of the resultant group moment of each $-COCH_3$ group does not lie on the same plane of the ring & also does not acts along the diagonal of the ring. Because of this, the given compound possesses appreciable dipole moment.

Q-12. The dipole moment of butan-2,3-dione is very small whereas that of cyclohex-3,5-dien-1,2-dione is very large. Explain. [C.U-2019]


Solution: Butane-2,3-dione may exist in s-cis & s-trans conformations. The dipole-dipole repulsion is avoided in s-trans form. Thus, 1,2-diketo form gets stabilization by assuming antiparallel orientation of two keto groups. As a consequence, the compound exists almost exclusively in the more stable s-trans configuration & the overall μ of the compound is very small.

In of cyclohex-3,5-dien-1,2-dione, there is no antiparallel orientation of the two keto groups is possible due to rigid structure of the compound. Because of this, the compound possesses a large dipole moment.


Q-13. 1,2-dichloroethane has a very little dipole moment whereas 1,2-ethanediol has considerable dipole moment. Explain. [B.U-2014]

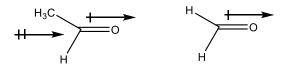
Solution: 1,2-dichloroethane exist in anti & gauche forms. The μ of anti-form is zero because the two C-Cl dipoles are anti parallel. But in gauche form, there is dipole moment. In vapor phase, because of dipole-dipole repulsion & steric repulsion, the gauche form is less stable than the anti-form. Therefore, the compound exists almost in anti-form & the overall dipole moment of this compound is very small. In the case of ethane-1,2-diol, the gauche form is more stable due to intramolecular hydrogen bonding than anti form. In gas phase, the compound exists almost in the gauche form & the compound ethane-1,2-diol possesses considerable dipole moment.

Q-14. The dipole moment of 1,2-dichloroethane increases as the temperature is increased.

Solution: 1,2-dichloroethane exist in anti & gauche forms. The μ of anti-form is zero because the two C-Cl dipoles are anti-parallel. But in gauche form, there is dipole moment. In vapor phase, because of dipole-dipole repulsion & steric repulsion, the gauche form is less stable than the anti-form. As the temperature increases, the population of gauche conformer (less stable) increases & so, the overall dipole moment of the compound increases.

Q-15. Which one of following will have lower dipole moment and why?

$C_2H_5CN \ \& \ C_2H_5NC$

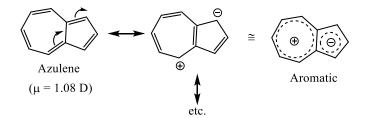

Solution: Nitrogen is more electronegative than carbon. As a result, the C-N bond in both compound ethyl cyanide & ethyl isocyanide becomes polar & the compound shows considerable dipole moment due to μ_{σ} . In ethyl isocyanide, the lone pair on nitrogen atom becomes involved in resonance interaction with carbon atom. So, in ethyl isocyanide, $\mu\sigma$ & μ_{π} operates in opposite directions thereby decreasing its dipole moment. As a result, the dipole moment of ethyl cyanide is higher than that of ethyl isocyanide.

$$\mu_{\sigma} \longleftrightarrow \mu_{\sigma} \longleftrightarrow \mu_{\sigma} \longleftrightarrow \mu_{\sigma}$$

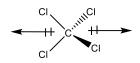
$$H_{3}C - CH_{2} - C \equiv N \qquad H_{3}C - CH_{2} - N = C : \longrightarrow H_{3}C - CH_{2} - N \equiv C$$
ethyl cyanide (more polar) ethyl isocyanide (less polar)

Q-16. How can you explain that acetaldehyde has a greater dipole moment than formaldehyde?

Solution: In acetaldehyde, the dipole moment of C=O bond is assisted by the resultant of the CH_3-C_{sp2} & Cs_{p2} -H bonds & hence the molecule has greater dipole moment than formaldehyde. Formaldehyde possesses dipole moment due to only C=O bond. Therefore, acetaldehyde has a greater dipole moment than formaldehyde.

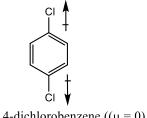

Q-17. Why 1-butene has higher dipole moment than 1-butene? [B.U-2012]

Solution: A C-C_{sp} bond is more polarized than a C-C_{sp2} bond because the carbon atom with more 's' character is more electronegative. Therefore, 1-butene has higher dipole moment than 1-butene.


$$\begin{array}{cccc} H_{3}C & - CH_{2} - C \blacksquare CH \\ & & & & \\ & & &$$

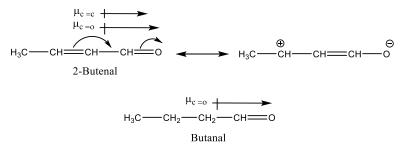
Q-17. Can a molecule have a dipole moment if it has no polar covalent bonds? Can a molecule have polar bonds but no dipole moment? Justify your answer with an example.

Solution: Azulene (hydrocarbon) molecule has no polar bonds but it has high dipole moment (μ = 1.08 D). Azulene (ten π -electrons system) is aromatic compound and both the ring possess a close loop of six π -electrons. Due to gain aromaticity, the major contributing structure of azulene has charge separated and it may be regarded as a combination of aromatic cycloheptatrienyl cation & the aromatic cyclopentadienyl anion. So, it has higher dipole moment.

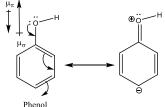


Carbon tetrachloride (CCl₄) molecule has four C-Cl bonds but it has no dipole moment. CCl₄ molecule has tetrahedral geometry. So, the resultant dipole moment of any two adjacent C-Cl bonds gets cancelled by an equal & opposite resultant dipole moment of the remaining two C-Cl bonds. As a result, the net dipole moment of the molecule is zero.

Carbon tetrachloride ($\mu = 0$)


Chlorine is more electronegative than carbon. In 1,4-dichlorobenzene, the two electronegative atoms are present exactly opposite to each other. Their dipole moments cancel out each other. In 1,4dichlorobenzene, So, the individual C-Cl bond moments are equal in magnitude but opposite in direction and they cancel each other. As a result, the molecule becomes nonpolar.

1,4-dichlorobenzene (($\mu = 0$)


Q-18. 2-butenal has higher dipole moment than butanal. Explain.

Solution: In 2-butenal, the π -electrons of C=C is delocalized with the -CH=O group and the dipole moment of C=O bond is assisted by the μ_{π} of C=C bond. So, the molecule has greater dipole moment than butanal. But butanal possesses dipole moment due to only C=O bond. Therefore, 2-butenal has a greater dipole moment than butanal.

Q. Why polarizability of O-H bond in phenol is higher than the O-H bond of methyl alcohol? [C.U-2015]

Solution: In phenol, the lone pair on oxygen atom is delocalized with the π -electrons of benzene ring. The C-O bond in phenol becomes partial double bond character and there is positive charge on oxygen atom due to electron withdrawing benzene ring. So, μ_{σ} of C-OH is opposed by μ_{π} of C-OH. Therefore, the polarizability of O-H bond is less in phenol. In methanol, there is no such positive charge on oxygen atom. Therefore, the polarizability of O-H bond in phenol is higher than the O-H bond of methyl alcohol.

University of Calcutta

Q-1. Rationalize with reasoning, which compound in each of the following pair has the higher dipole moment: (i) Butanal & 2-butenal, (ii) p-Diacetylbenzene and p-dicyanobenzene. [C.U-1999]

Q-2. Arrange, with explanation, the following compounds in order of increasing dipole moment. [C.U-2000]

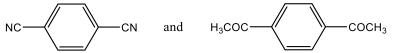
 $H_3C - CH_2 - CI \ , \ H_2C = CH - CI \ , \ HC = CI$

Q-3. which has the higher dipole moment-allyl bromide or vinyl bromide? Why? [C.U-2001]

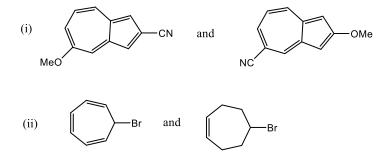
Q-4. Justify with reasoning, which compound in the following pair has greater dipole moment:

4-nitroaniline and 2,3,5,6-tetramethyl-4-nitroaniline.	[C.U-2002]
--	------------

Q-5. Which one of following will have lower dipole moment and why? [C.U-2003]


 $C_2H_5CN \& C_2H_5NC$

Q-6. Explain which one has got higher dipole moment-CH₃Cl or CH₃F. [C.U-2004]


Q-7. How does bond polarity differ from bond polarizability? Explain with suitable examples. [C.U-2007]

Q-8. Compare the dipole moment of CHCl₃ and CH₂Cl₂ with reasons. [C.U-2007]

Q-9. Compare the dipole moment of following compounds: [C.U-2008]

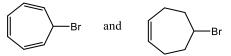
Q-10. Compare the dipole moments of the following compounds with reason: [C.U-2009]

Q-11. Arrange, with explanation, the following compounds in order of increasing dipole moment. [C.U-2010]

 $H_3C - CH_2 - CI \ , \ H_2C - CI - CI \ , \ HC - CI$

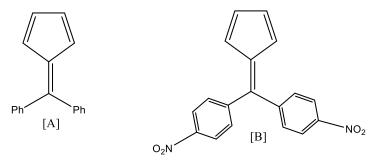
Q-12. Dipole moments of MeF (1.56 D) and MeCl (1.51D) are similar even though fluorine is considerably more electronegative than chlorine. [B.U-2011]

Q-13. Which of the following has higher dipole moment and why? Vinyl chloride and vinyl fluoride. [C.U-2012]


Q-14. Predict, with reasoning, which compounds in each of the following pairs has the higher dipole moment. [C.U-2013]

(i) H_3C —CH=CH—CI and H_3C —C=CI (ii) p-diacetylbenzene and p-dicyanobenzene

Q-15. Compare the dipole moment in each of the following pairs:

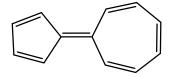

Q-16. why dipole moment of cyclopentadienone is less than cyclopentanone? [C.U-2015]

Q-17. Compare the dipole moments of the following compounds with explanation: [C.U-2016]

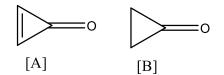
Q-18. 1,2-dichloroethane has zero dipole moment in gaseous phase but in solution the dipole moment increases with increases in polarity of the solvent. Explain. [C.U-2017]

Q-19. Dipole moment of [A] is higher than [B]. Explain. [C.U-2018]

Q-12. The dipole moment of butan-2,3-dione is very small whereas that of cyclohex-3,5-dien-1,2dione is very large. Explain. [C.U-2019]


[C.U-2014]

Q-1. Which one of the following pairs will have higher dipole moment? Give reasons for your answer. P-dinitrobenzene and p-dihydroxybenzene. [B.U-1999]


Q-2. How would you assign structures to three dichlorobenzenes from their dipole moment? [B.U-2000]

Q-3. Arrange the following compounds in order of increasing dipole moment: CH_3Cl , CH_2Cl_2 , $CHCl_3$. [B.U-2001]

Q-4. The following hydrocarbon has an unusual high dipole moment. Explain how a large dipole moment might arise. [B.U-2001]

Q-5. Compound A has stronger dipole moment than compound B. Why? [B.U-2002]

Q-6. Which compound has higher dipole moment? Butan-2,3-dione and cyclopentane-1,2-dione. [B.U-2003, 2005]

Q-7. Why 1-butene has higher dipole moment than 1-butene? [B.U-2004]

Q-8. Which of the following compounds will have zero dipole moment? (i) cis-1,2-dichloroethylene (ii) trans-1,2-dichloroethylene (iii) 1,1-dichloroethylene. [B.U-2006, 2007]

Q-9. The dipole moment of methyl halides is: CH₃F (1.82 D), CH₃Cl (1.94 D), CH₃Br (1.79 D) & CH₃I (1.64D). Explain. [B.U-2006, 2008]

Q-10. Which of the following compounds have/ has no dipole moment? (i) propylene (ii) 1-butene (iii) cis-2-butene (iv) trans-2-butene. [B.U-2006, 2008]

Q-11. which one has greater dipole moment between CHCl₃ & CH₂Cl₂? Why? [B.U-2007]

Q-12. Can a molecule have a dipole moment if it has no polar covalent bonds? Can a molecule have polar bonds but no dipole moment? Justify your answer with an example. [B.U-2008, 2011]

Q-13. Explain why the dipole moment of $CHCl_3$ is less than that of CH_2Cl_2 . [B.U-2009]

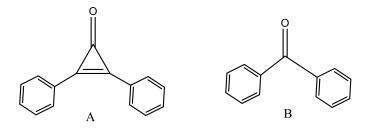
Q-14. Which of the following compounds will have higher dipole moment and why? [B.U-2010]

(i) CH₃CH₂-Cl (ii) CH₂=CH-Cl

Q-15. Compare the dipole moments of the following pairs: (i) trans and cis-1,2-dichloroethene

(ii) p-dichlorobenzene and p-dihydroxybenzene. [B.U-20112]

Q-16. Can you predict the direction of dipole moments in the following molecules? [B.U-2013]


ICl, Br₂, CH₂=CH-Br, propyne.

Q-17. Compare the dipole moments of cis- and trans-3-chloro-2-butene. [B.U-2013]

Q-18. 1,2-Dichloroethane has a very low dipole moment, whereas 1,2-ethanediol has a considerably dipole moment-explain. [B.U-2014]

Q-19. How can you explain that acetaldehyde has a greater dipole moment than formaldehyde? [B.U-2015]

Q-20. Which of the following has greater dipole moment and why? [B.U-2015]

Q-21. Azulene has an unexpectedly high dipole moment. Why? [B.U-2017]

Q-22. Dipole moment of CH₂=CH-CN greater than that of CH₂=CH-CN. Why? [B.U-2017]

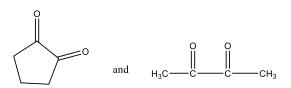
Q-23. Azulene is a non-benzenoid compound. Account for its aromaticity and relatively high dipole moment. [B.U-2018]

Q-24. Compare the dipole moments of the following pairs: [B.U-2019]

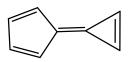
(i) p-dichlorobenzene and p-dihydroxy benzene (ii) o-nitro toluene & p-nitro toluene.

Vidyasagar University

Q-1. Which compound of the following pair has higher dipole moment? Explain. 1,2-dibromoethane and 1,2-ethanediol. [B.U-2005]


Q-2. Arrange the following organic compounds in order of decreasing polarity: Give reasons:

Q-3. Which of the following pairs has higher dipole moment? Give reason. [V.U-2006]


(i) CH_3F and CH_3Cl (ii) butane-1,2-dione and cyclopentane-1,2-dione

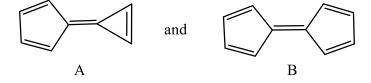
Q-4. how do you compare the dipole moments of NH_3 and NF_3 ? Explain. [V.U-2006]

Q-5. Which of the following compounds has higher dipole moment and why? [V.U-2009]

Q-4. The following hydrocarbon has an unusual high dipole moment. Explain. [V.U-2010]

Q-5. Which has higher dipole moment and explain p-Fluorophenol and p-chlorophenol. [V.U-2011]

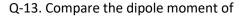
Q-6. Arrange the following molecules with their increasing order of dipole moments: [V.U-2012]

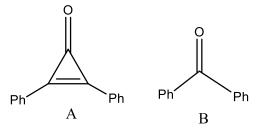

H₃C-CH₂-CI, H₂C=CH-CI, HCEC-CI

Q-7. The measured dipole moment of 4-nitro aniline (6.2 D) is larger than the value of calculated using standard group dipoles (5.2 D). [V.U-2012]

Q-8. "Dipole moment of MeF (1.56D) and MeCl (1.51D) are similar even though fluorine is considerably more electronegativity than chlorine". Explain with reason. [V.U-2013]

Q-9. Sesquifulvalene, a hydrocarbon, has unusually high dipole moment. Explain. [V.U-2013]

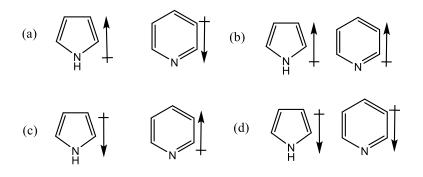

Q-10. Which compound possesses high dipole moment? Why? [V.U-2015]



Q-11. Compare dipole moment for following compounds. [V.U-2016]

 $CI\text{-}CH_2\text{-}COOH \text{ and } H_2N\text{-}CH_2\text{-}COOH$

Q-12. What is the difference between polarity and polarizability? Explain with example. [V.U-2016]

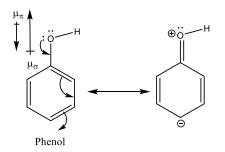


Q-14. Compare the dipole moments between CH₃CH₂Cl and CH₂=CH-Cl. [V.U-2018]

[V.U-2017]

Entrance Gallery

Q-1. The correct orientation of dipoles in pyrrole and pyridine is [JAM-2014]


Q-2. The correct order of dipole moments (μ) of the following compounds is [JAM-2008]

1. $CH_3CH_2CH_2CHO$ 2. $CH_3CH=CH-CHO$ 3. $CH_3CH_2CH=CH_2$

(a) $\mu_1 > \mu_2 > \mu_3$ (b) $\mu_2 > \mu_3 > \mu_1$ (c) $\mu_3 > \mu_1 > \mu_2$ (d) $\mu_2 > \mu_1 > \mu_3$

Q. Why polarizability of O-H bond in phenol is higher than the O-H bond of methyl alcohol? [C.U-2015]

Solution: In phenol, the lone pair on oxygen atom is delocalized with the π -electrons of benzene ring. The C-O bond in phenol becomes partial double bond character and there is positive charge on oxygen atom due to electron withdrawing benzene ring. So, μ_{σ} of C-OH is opposed by μ_{π} of C-OH. Therefore, the polarizability of O-H bond is less in phenol. In methanol, there is no such positive charge on oxygen atom. Therefore, the polarizability of O-H bond in phenol is higher than the O-H bond of methyl alcohol.

